Exercise 10

Solve the differential equation.

$$
\frac{d^{2} y}{d x^{2}}+y=\csc x, \quad 0<x<\pi / 2
$$

Solution

This is a linear inhomogeneous ODE, so the general solution can be expressed as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
\frac{d^{2} y_{c}}{d x^{2}}+y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad \frac{d y_{c}}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y_{c}}{d x^{2}}=r^{2} e^{r x}
$$

Substitute these formulas into equation (1).

$$
r^{2} e^{r x}+e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+1=0
$$

Solve for r.

$$
r=\{-i, i\}
$$

Two solutions to the ODE are $e^{-i x}$ and $e^{i x}$. According to the principle of superposition, the general solution to equation (1) is a linear combination of these two.

$$
\begin{aligned}
y_{c}(x) & =C_{1} e^{-i x}+C_{2} e^{i x} \\
& =C_{1}(\cos x-i \sin x)+C_{2}(\cos x+i \sin x) \\
& =\left(C_{1}+C_{2}\right) \cos x+\left(-i C_{1}+i C_{2}\right) \sin x \\
& =C_{3} \cos x+C_{4} \sin x
\end{aligned}
$$

C_{3} and C_{4} are arbitrary constants. On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
\frac{d^{2} y_{p}}{d x^{2}}+y_{p}=\csc x \tag{3}
\end{equation*}
$$

Use the method of variation of parameters to obtain it: Allow the parameters in the complementary solution to vary.

$$
y_{p}(x)=C_{3}(x) \cos x+C_{4}(x) \sin x
$$

Differentiate it with respect to x.

$$
\frac{d y_{p}}{d x}=C_{3}^{\prime}(x) \cos x+C_{4}^{\prime}(x) \sin x-C_{3}(x) \sin x+C_{4}(x) \cos x
$$

If we set

$$
\begin{equation*}
C_{3}^{\prime}(x) \cos x+C_{4}^{\prime}(x) \sin x=0, \tag{4}
\end{equation*}
$$

then

$$
\frac{d y_{p}}{d x}=-C_{3}(x) \sin x+C_{4}(x) \cos x .
$$

Differentiate it with respect to x once more.

$$
\frac{d^{2} y_{p}}{d x^{2}}=-C_{3}^{\prime}(x) \sin x+C_{4}^{\prime}(x) \cos x-C_{3}(x) \cos x-C_{4}(x) \sin x
$$

Substitute these formulas into equation (3).

$$
\left[-C_{3}^{\prime}(x) \sin x+C_{4}^{\prime}(x) \cos x-\underline{C}_{3}(x) \cos x-\overline{C_{4}}(x) \sin x\right]+\left[C_{3}(x) \cos x+C_{4}(x) \sin x\right]=\csc x
$$

Simplify the left side.

$$
\begin{equation*}
-C_{3}^{\prime}(x) \sin x+C_{4}^{\prime}(x) \cos x=\csc x \tag{5}
\end{equation*}
$$

Multiply both sides of equation (3) by $\sin x$, and multiply both sides of equation (4) by $\cos x$.

$$
\begin{aligned}
C_{3}^{\prime}(x) \cos x \sin x+C_{4}^{\prime}(x) \sin ^{2} x & =0 \\
-C_{3}^{\prime}(x) \cos x \sin x+C_{4}^{\prime}(x) \cos ^{2} x & =\cot x
\end{aligned}
$$

Add the respective sides of these equations.

$$
C_{4}^{\prime}(x)=\cot x
$$

Integrate both sides to get $C_{4}(x)$, setting the integration constant to zero.

$$
C_{4}(x)=\ln |\sin x|
$$

Note that because $0<x<\pi / 2$, the absolute value sign can be dropped.

$$
C_{4}(x)=\ln (\sin x)
$$

Solve equation (4) for $C_{3}^{\prime}(x)$.

$$
\begin{aligned}
C_{3}^{\prime}(x) & =-C_{4}^{\prime}(x) \frac{\sin x}{\cos x} \\
& =-(\cot x) \frac{\sin x}{\cos x} \\
& =-1
\end{aligned}
$$

Integrate both sides to get $C_{3}(x)$, setting the integration constant to zero.

$$
C_{3}(x)=-x
$$

The particular solution is then

$$
\begin{aligned}
y_{p} & =C_{3}(x) \cos x+C_{4}(x) \sin x \\
& =(-x) \cos x+[\ln (\sin x)] \sin x \\
& =\ln (\sin x) \sin x-x \cos x .
\end{aligned}
$$

Therefore, the general solution to the original ODE is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =C_{3} \cos x+C_{4} \sin x+\ln (\sin x) \sin x-x \cos x
\end{aligned}
$$

